منابع مشابه
Semisimple Strongly Graded Rings
Let G be a finite group and R a strongly G-graded ring. The question of when R is semisimple (meaning in this paper semisimple artinian) has been studied by several authors. The most classical result is Maschke’s Theorem for group rings. For crossed products over fields there is a satisfactory answer given by Aljadeff and Robinson [3]. Another partial answer for skew group rings was given by Al...
متن کاملOn the Jacobson radical of strongly group graded rings
For any non-torsion group G with identity e, we construct a strongly G-graded ring R such that the Jacobson radical J(Re) is locally nilpotent, but J(R) is not locally nilpotent. This answers a question posed by Puczy lowski.
متن کاملFiltrations in Semisimple Rings
In this paper, we describe the maximal bounded Z-filtrations of Artinian semisimple rings. These turn out to be the filtrations associated to finite Z-gradings. We also consider simple Artinian rings with involution, in characteristic 6= 2, and we determine those bounded Z-filtrations that are maximal subject to being stable under the action of the involution. Finally, we briefly discuss the an...
متن کاملStrongly nil-clean corner rings
We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings, then $R/J(R)$ is nil-clean. In particular, under certain additional circumstances, $R$ is also nil-clean. These results somewhat improves on achievements due to Diesl in J. Algebra (2013) and to Koc{s}an-Wang-Zhou in J. Pure Appl. Algebra (2016). ...
متن کاملGraded Rings and Modules
1 Definitions Definition 1. A graded ring is a ring S together with a set of subgroups Sd, d ≥ 0 such that S = ⊕ d≥0 Sd as an abelian group, and st ∈ Sd+e for all s ∈ Sd, t ∈ Se. One can prove that 1 ∈ S0 and if S is a domain then any unit of S also belongs to S0. A homogenous ideal of S is an ideal a with the property that for any f ∈ a we also have fd ∈ a for all d ≥ 0. A morphism of graded r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2002
ISSN: 0021-8693
DOI: 10.1016/s0021-8693(02)00113-8